
CANADA LANDS SURVEYS RECORDS F.B. 3 3 5 6 Date 3 APR. 1984

ANADA IANDS SURVEYS RECORDS

McEllanney

PETRO-CANADA

NAVIGATION AND POSITIONING OF THE DRILLSHIP "PELERIN" ON OFFSHORE EXPLORATORY WELL LOCATION, PETRO-CANADA ET AL PINING E-16

JOB 083562

Submitted by:

McELHANNEY OFFSHORE SURVEYS LTD.

10 Austin Street

Donna Building

O'Leary Industrial Park

St. John's, Newfoundland

A1B 4B8

Telephone: (709) 726-4252

DECEMBER, 1983

TB 33356

TABLE OF CONTENTS

			Page			
1.0	INT	TRODUCTION	1			
2.0	EQUIPMENT AND PERSONNEL					
	2.1	MV Balder Cabot	1			
	2.2	Pelerin	4			
3.0	SUR	RVEY DATA	5			
	3.1	ARGO Station Coordinates	5			
	3.2	ARGO DM-54 Information	6			
	3.3	Mini-Ranger Station Coordinates	6			
	3.4	Proposed Well Location .	6			
4.0	FIEI	LD SURVEYS	8			
	4.1	Antenna Offsets	8			
	4.2	Operations Summary	8			
	4.3	ARGO Calibration and Accuracy Checks	12			
		4.3.1 ARGO Calibration	12			
		4.3.2 Ongoing Accuracy Checks	15			
	4.4	Final Position of Well Location	17			
	4.5	Final Position Confirmation	20			
5.0	CON	ICLUSIONS AND RECOMMENDATIONS	23			
	5.1	Position Comparisons	23			
	5.2	Survey Accuracy Analysis	23			
	5.3	Problems	26			
	5.4	Recommendations	27			

LIST OF TABLES

		Page
TABLE 1 -	BALDER CABOT PERSONNEL AND EQUIPMENT	3
TABLE 2 -	PELERIN PERSONNEL AND EQUIPMENT	4
TABLE 3 -	ARGO SHORE STATION COORDINATES	5
TABLE 4 -	ANTENNA OFFSETS ON DRILLSHIP PELERIN	7
TABLE 5 -	RESECTION RIG POSITION SUMMARY	11
TABLE 6 -	ARGO/SATELLITE CALIBRATION SUMMARY	13
TABLE 7 -	DAILY MEAN ARGO/SATELLITE COMPARISONS	15
TABLE 8 -	ARGO RANGE RESECTION DATA FOR FINAL POSITION	17
TABLE 9 -	MINI-RANGER RESIDUAL DATA FOR FINAL POSITION	19
TABLE 10 -	SUMMARY OF SATELLITE ANTENNA POSITIONS FOR CONFIRMATION SURVEY	20
TABLE 11 -	SUMMARY OF SATELLITE POSITIONS TRAVERSED TO DRILLSTEM	21
	LIST OF FIGURES	
FIGURE 1 -	SCHEMATIC OF EQUIPMENT ON BALDER CABOT	2
FIGURE 2 -	TENTATIVE PLAN OF SURVEY	7
FIGURE 3 -	ANTENNA OFFSETS	9
FIGURE 4 -	FINAL POSITION COMPARISON	24
FIGURE 8 -	PROPOSED BUOY PATTERN	
	APPENDICES	
APPENDIX A -	OUTPUT FROM GEOPAN FOR ACCURACY ANALYSIS	
APPENDIX B -	FINAL PLAN PETRO-CANADA ET AL PINING E-16	

1.0 INTRODUCTION

Part of the Labrador program for Petro-Canada during the season of 1983 involved the spudding of a new hole for which McElhanney Offshore Surveys provided navigation and positioning for the drillship Pelerin at Offshore Exploratory Well Location Petro-Canada et al Pining E-16. The following report summarizes the onshore and offshore activities pertaining to that rig move, details the results, discusses any problems encountered and suggests recommendations for future moves of this type.

The final drillstem position (1927 NAD) as determined using a combination of ARGO DM-54 and Mini-Ranger III ranges is:

Latitude

54º 45' 22.47" N

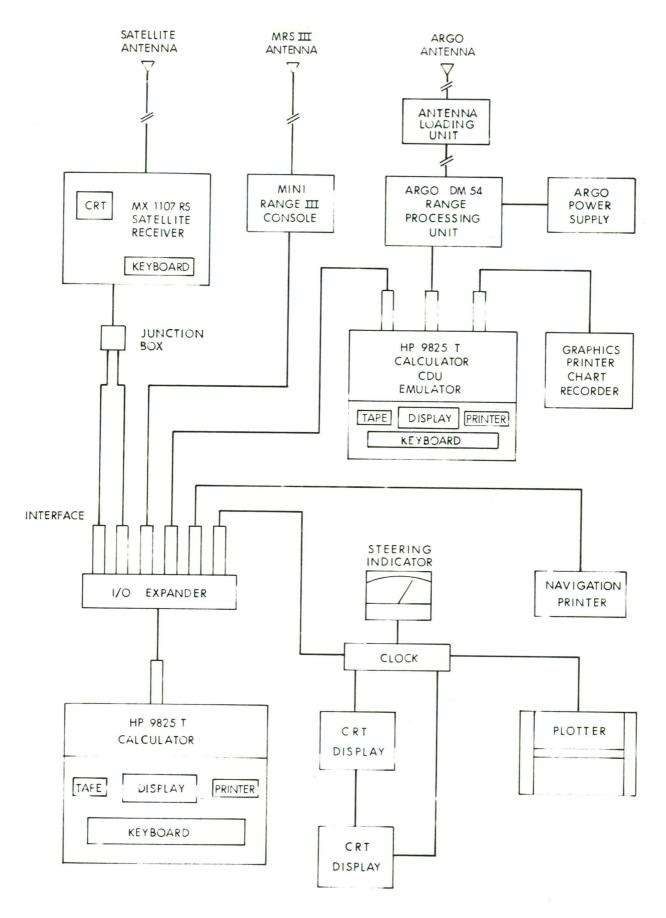
Longitude

550 02' 49.06" W

This situates the drillstem 11.6 m at 2710 from the design location.

2.0 EQUIPMENT AND PERSONNEL

2.1 MV Balder Cabot


The integrated navigation and positioning system onboard the Balder Cabot was developed in-house by McElhanney Surveying & Engineering Ltd. The major components of this system, as installed on the Balder Cabot, are:

- An ARGO DM-54 Range/Range system;
- A Magnavox MX 1107 RS Satellite Receiver;
- A Motorola Mini-Ranger III receiver;
- HP 9825 T computers.
- NAVPAK software

Figure 1 is a schematic diagram of the systems components while Table 1 lists the components and personnel employed.

FB 3 3356

SYSTEM COMPONENTS

FIGURE 1

TB 33356

For this rig move the ARGO DM-54 system was used as the prime means of positioning. The NAVPAK software (documentation available from McElhanney Offshore Surveys Ltd., St. John's, Newfoundland) allows for range input from multiple sensors which are used in a weighted least squares solution to yield position. The software controls speed and heading outputs to the satellite receiver, compares satellite fix position to the navigation position, allows for tape-recording and hard copy of position solution and error statistics and presents the helmsman and operator with a graphics display of the ship's track in relationship to various target points.

The Motorola Mini-Ranger III system was intended to be used as the means of calibrating the ARGO system, but due to shore station equipment problems and extensive ice coverage near the coast line at the time of the move the ARGO was instead calibrated by Satellite/ARGO comparisons. Section 4.3 "ARGO Calibration and Accuracy Checks" details this aspect of the move. The MX 1107 Satellite Receiver was also used to obtain and maintain ARGO lane count on the survey vessel.

TABLE 1 BALDER CABOT

Equipment

1	ARGO DM-54 Range Processing Unit
1	ARGO DM-54 Antenna Loading Unit
1	Magnavox 1107RS Satellite Receiver
1	Motorola Mini-Ranger III Console and Transponder
1	HP 9825T CDU Emulator
1	HP 9825T Navigation computer
1	HP I/0 Expander
1	Microline 82A Navigation Printer
1	Microline 82A Graphics Printer
1	Houston Instruments Track Plotter

TB 33356

Personnel

Max Sullivan Senior Surveyor/Party Chief N.L.S. Bob Hinchley Senior Surveyor C.L.S.

June 20 to July 4, 1983 June 20 to July 4, 1983

Pat Power Navigator

June 20 to July 4, 1983

2.2 Drillship Pelerin

Onboard the drillship Pelerin the survey equipment consisted of a Motorola Mini-Ranger III transponder and a Magnavox MX 1107 RS satellite receiver.

The Mini-Ranger III transponder was used in conjunction with the Mini-Ranger III receiver onboard the Balder Cabot to provide ranges from the Balder Cabot to the drilling rig. These ranges would be used along with the ship's position (which was provided by the ARGO system) in a least squares solution to obtain the drillships location (see Section 4.0). The MX 1107 satellite receiver onboard the Pelerin was used to obtain a confirmation position by doppler satellite point positioning.

TABLE 2 DRILLSHIP PELERIN

Equipment

- 1 Magnavox 1107 RS Satellite Receiver and Antenna
- 1 Motorola Mini-Ranger III Transponder and Power Supply

Personnel

Terry Walker - Surveyor

June 24 to July 7, 1983

3.0 SURVEY DATA

3.1 ARGO Station Coordinates

Four ARGO shore stations were used for this rig move. These stations were located at Spotted Island, Cape Harrison, Cape Harrigan (all under CLSR # 64857) and Stirrup Island (CLSR # 67305). ARGO Antenna coordinates and the chain configuration for these four stations are given in Table 3.

TABLE 3
ARGO SHORE STATION COORDINATES

ARGO STATION	CODE	MODE	GEOGRAPHICS (NAD 1927)	UTM COORDINATES MSL ZONE 21/CM 57°W ELEV (M)
Spotted Island 1983 ARGO Station	1-ODD AR 1	Slave	53°30'58.673" N 55°45'02.429" W	N 5 930 216.223 84 E 582 840.078
CLSR # 64857				2 002 040.010
Cape Harrison	2-ODD	Relay	54°55'28.777" N	N 6 086 596.012 180
1983 ARGO Station CLSR # 64857	AR 2		57°56'20.674" W	E 439 814.929
Cape Harrigan	3-ALL	Slave	55°50'29.959" N	N 6 193 226.256 79
1983 ARGO Station CLSR #64857	AR 3		60°19'09.703" W	E 292 168.385
Stirrup Island	4-ALL	Slave	57°34'10.982" N	N 6 388 805.132 72
1983 ARGO Station CLSR #67305	AR 4		61 ⁰ 18'56.756" W	E 241 939.830

S 33356

Geographic coordinates are referred to the 1927 North American Datum (NAD 27) using the Clark 1866 ellipsoidal parameters.

Semi-major axis (a) = 6378206.4Semi-minor axis (b) = 6356583.8Reciprocal of flattening (1/f) = 294.97869

Universal Transverse Mercator (UTM) coordinates were computed for Zone 21, central meridian 57° W.

The values used in NAVPAK for conversion from satellite datum (NWL $10\ D$ Broadcast Ephemeris) to $1927\ NAD$ were:

 $\Delta X = -38 \text{ m}$ $\Delta Y = 158 \text{ m}$ $\Delta Z = 184 \text{ m}$

3.2 ARGO DM-54 Information

Range Frequency - 1766.0 kHz

Lane Identification Frequency - 1942.6 kHz

Assumed Propagation Velocity - 299670 km/sec

Lane Width (calculated) - 84.844281 meters

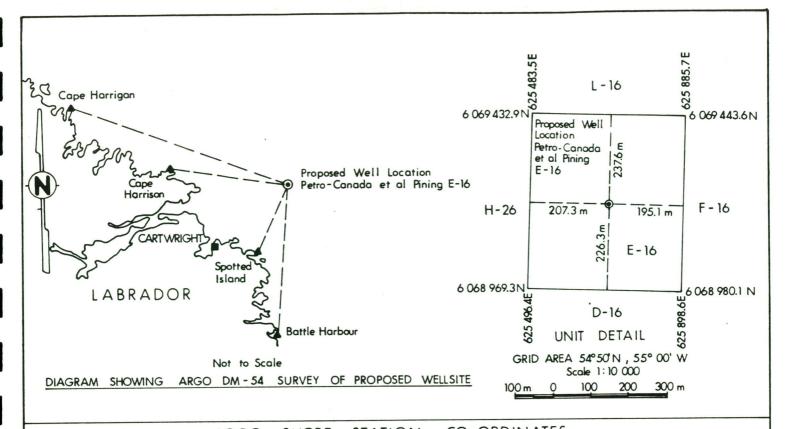
3.3 Mini-Ranger Station Co-ordinates

Two Mini-Ranger III stations were also installed. As these stations were not used during the survey the station names and coordinates are not given here.

3.4 Proposed Well Location

A Tentative Plan of Survey (Figure 2) was prepared and submitted for C.O.G.L.A. approval based on coordinates supplied by Petro-Canada.

Latitude


540 45' 22.46" N

Longitude

550 02' 48.41" W

(NAD 27)

ARGO SHORE STATION CO-ORDINATES								
STATION	GEOGRAPHICS	UTM	SURFACE DISTANCE TO	SHOWN ON				
STATION	GLOGRAFFILES	01111	PINING E-16	PLAN CLSR				
BATTLE	52° 16' 38.38" N	5 792 611.46 N	270 170	67305				
HARBOUR	55° 34' 59.58 " W	596 661.68 E	278 178 m	67303				
SPOTTED	53° 30' 58.67" N	5 930 216.22 N	145 481 m	64857				
ISLAND	55° 45' 02.43 " W	582 840.08 E	145 481 M	04037				
CAPE	54° 55' 28.78" N	6 086 596.01 N	186 760 m	64857				
HARRISON	57° 56' 20.67" W	439 814.93 E	180 760 m	04037				
CAPE	55° 50' 29.96 '' N	6 193 226.25 N	355 937 m	64857				
HARRIGAN	60° 19' 09.70 " W	292 168.39 E	333 737 111					

TENTATIVE PLAN OF SURVEY

PETRO-CANADA ET AL PINING E-16
EXPLORATORY WELL LOCATION

LATITUDE 54° 45' 22.46" N LONGITUDE 55° 02' 48.41" W

UTM CO-ORDINATES

6 069 200.96 N 625 697.29 E

APPROX. WATER DEPTH 183 m.
CO-ORDINATES ARE REFERRED TO NAD 1927 DATUM
UTM CO-ORDINATES ZONE 21 CENTRAL MERIDIAN 57° W

DETERMINATION OF FINAL WELL CO-ORDINATES

PRIMARY POSITIONING BY CUBIC ARGO DM-54 RANGES FROM SHORE STATIONS ON LABRADOR COAST CONFIRMATION BY DOPPLER SATELLITE

DATE : DEC. 15, 83

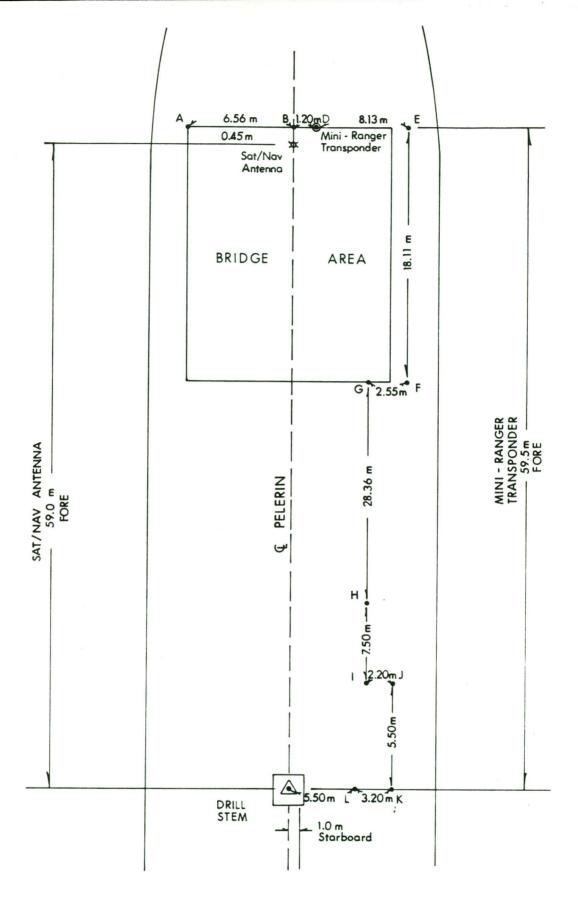
McELHANNEY SERVICES LTD. 083562

4.0 FIELD SURVEYS

4.1 Antenna Offsets

All antenna offsets (Figure 3) were measured (in feet and meters) twice in directions parallel and perpendicular to the rigs heading. Antenna heights above sea level were determined using a combination of measured distance to deck levels and the drillship draft. Rig headings were determined using the Pelerin's gyro compass.

TABLE 4
ANTENNA OFFSETS ON DRILLSHIP PELERIN


ANTENNA	HEIGHT (m) A.M.S.L.	DISTANCE FROM DRILLSTEM (m)		
1107 RS Satellite Antenna	24.1	59.0 m forward	0.0 m starboard	
Motorola Mini-Ranger III	21.1	59.5 m forward	1.0 m starboard	

4.2 Operations Summary

On 31 May 1983, Terry Drake of McElhanney arrived in Goose Bay and the following days were spent checking out the ARGO sites before the mobilization of the chain commenced.

On 9 June 1983, J. Muelaner and R. Friesen arrive in Goose Bay to assist in the ARGO and Mini-Ranger chain mobilization.

Not to Scale

SAT/NAV & MINI - RANGER OFFSETS

On 17 June 1983 Spotted Island ARGO was mobilized. On 18 June 1983 Cape Harrison ARGO, Quaker Hat Mini-Ranger and Cape Harrison Mini-Ranger were mobilized.

On 19 June 1983 Harrigan ARGO was installed, and on the 26 June 1983 Stirrup Island ARGO was mobilized, completing the South Labrador ARGO chain. These were the shore stations used for the Pelerin rig move to Petro-Canada et al Pining E-16.

For the Pelerin rig move the supply vessel Balder Cabot was used as the survey vessel. The survey equipment onboard was already installed as this boat was used for previous Petro-Canada rig moves.

On 21 June 1983 at approximately 21:54 G.M.T. the Balder Cabot departed St. John's Newfoundland for the Pining E-16 location. The McElhanney surveyors onboard were Max Sullivan, N.L.S., Senior Surveyor; Bob Hinchley, C.L.S., Senior Surveyor; and Pat Power, Navigator.

On 22 June 1983 a Mini-Ranger III transponder was installed by McElhanney Offshore Surveys Ltd. onboard the drillship Pelerin.

On 23 June 1983 at approximately 21:20 G.M.T. the Balder Cabot arrived at the Pining E-16 location and commenced collecting satellite passes to be used later to calibrate the ARGO system.

On 24 June 1983, Terry Walker, a McElhanney Senior Surveyor, checked onboard the drillship Pelerin, and on the 25 June 1983, at approximately 15:00 G.M.T. the drillship departed St. John's Newfoundland for the Pining E-16 location.

On 27 June 1983 at 14:07 G.M.T. the Balder Cabot deployed a buoy Southwest of proposed location to be used by the Pelerin while coming onto location. At 22:50 G.M.T. the Pelerin was within 200 m of proposed location and maneuvering on its taut wire (DP system). At 23:35 G.M.T. the Balder Cabot completed a resection around the Pelerin and found the rig's drillstem to be 79 m on a bearing

TB 33356

of 245° from the proposed location. After supplying this information to the Operation Manager on the Pelerin it was decided to move the rig closer.

On 28 June 1983 at 01:20 G.M.T. a second resection was completed around the Pelerin. This resection indicated that the rig's drillstem was 16 m in a direction of 064° from the proposed location. At 02:00 G.M.T. the Pelerin deployed its bottom transponders and at 10:00 G.M.T. the Pelerin finished moving about and requested that their position be determined. At 10:34 G.M.T. the Balder Cabot ended resection number 3. A fourth resection was completed on 28 June 1983 and at 23:55 G.M.T. the Balder Cabot was cleared from the Pelerin and headed for Cartwright to pick up passengers.

On 1 July 1983 at 10:27 G.M.T. the Balder Cabot arrived back at the Pining E-16 location. Between 17:32 G.M.T. and 18:36 G.M.T. resections 5 and 6 were performed around the Pelerin. Resection number 6 was used for the final position of Petro-Canada et al Pining E-16 as by this time the 30 inch casing was in place. Table 5 summarizes the 6 resections performed during the survey.

On 1 July 1983 a new satellite string was started onboard the Pelerin to confirm its position. By the 4 July 1983, 40 satellite passes were collected, 27 of which were used for the confirmation of position survey.

TABLE 5
SUMMARY OF RESECTIONS FOR RIG POSITION

			nd Distance ocation	Positioning Devices ARGO/MRS III ARGO/MRS III ARGO/MRS III ARGO/MRS III
Date	Resection	Bearing	Distance	Devices
27 June 1983	1	2450	79 m	ARGO/MRS III
28 June 1983	2	640	17 m	•
28 June 1983	3	800	15 m	
28 June 1983	4	790	15 m	
01 July 1983	5	920	9 m	ARGO/MRS III
01 July 1983	6	910	12 m	ARGO/MRS III

^{*} Used to compute final position.

4.3 ARGO Calibration and Accuracy Checks

Before any radio navigational aid such as ARGO is used to navigate or position with the system must be calibrated. With an ARGO system this calibration is necessary to minimize the effects of local inductance, instrument error, and incorrect propagation velocities. (Propagation velocity assumed.) Once a system is calibrated, it is monitored constantly to verify the accuracy of the calibration and to determine if this calibration requires periodic adjustment. The next two subsections deal with the calibration and accuracy checks of the ARGO system used for the Pelerin move to Petro-Canada et al Pining E-16.

4.3.1 ARGO Calibration

The ARGO calibration for this rig move was obtained by ARGO/Satellite comparisons. This method first involved converting the positions generated by the satellite receiver (NWL10D Broadcast Ephemeris) to local datum (NAD 27) by using appropriate datum shift values. The datum shift values for this move are given in Section 3.1. These NAD 27 satellite positions were then inversed to the ARGO shore stations and yielded the true ARGO range values. The observed ARGO range readings were then compared to the satellite derived ranges and corrections applied accordingly. In order to obtain a valid calibration accuracy a number of ARGO/Satellite comparisons were made and the mean values applied. Initial calibration values (partial lane corrections) were left in the system from a previous survey, until the new values were obtained.

Table 6 is a list of the ARGO/Satellite comparisons used to calibrate the ARGO system.

TABLE 6
ARGO CALIBARTION BY ARGO/SATELLITE COMPARISONS

	Satfix 6	Quality		No. of	Re	ange and l	Position C	omparis	ons
Slat	Slon	Elev	Iter	Dop.	ΔR_1	ΔR_2	ΔR3	ΔΝ	ΔΕ
20	28	42	3	32	-9	-23	-21	-3	-23
23	40	50	2	33	-27	2	10	-29	0
16	28	53	3	36	-40	-51	-41	-26	-52
13	18	41	2	33	15	-10	-14	18	-8
31	25	23	3	29	6	-2	-4	6	-2
17	31	50	2	35	-16	-14	-9	-13	-14
19	25	42	3	36	26	11	4	24	13
28	29	32	3	29	63	0	-	64	6
23	31	41	3	33	-1	23	-	-8	22
22	47	58	3	31	48	45	_ '	35	49
16	29	52	3	33	30	-31	-	40	-28
							To the total transfer of the transfer of the total transfer of the transfer of the total transfer of the transfer of the total trans	PS-Tarris (Trimity) PS-Tarris (Trimity) Spanish	
				Σ	+95	-50	75	108	-37
				n	11	11	7	11	11
				x	+8.6	-4.5	-10.7	9.8	-3.4
			Parti	al Lane	+0.10	-0.05	-0.13		
		Old Ca	libration	Values	0.53	0.76	0.64		
		New Ca	libration	Values	0.63	0.71	0.51		

NOTE: The partial lane corrections were found by dividing the Mean (\bar{x}) by a lane width of 84.844281 m.

LEGEND FOR TABLE 6

Slat: Standard deviation for fix latitude in meters.

Slon: Standard deviation for fix longitude in meters.

Elev.: Maximum elevation angle, in degrees, of the satellite above the horizon.

Iter: Number of iterations (calculations) made to compute a position.

No. of

Dop.: Number of doppler counts obtained from the satellite.

 ΔR_1 : Difference in meters between satellite derived ARGO range and observed

ARGO range for station Spotted Island.

ΔR₂: Difference in meters between satellite derived ARGO range and observed

ARGO range for station Cape Harrison.

ΔR3: Difference in meters between satellite derived ARGO range and observed

ARGO range for station Cape Harrigan.

ΔN: Difference in Northing between satellite position and ARGO position in

meters (ARGO - Satellite).

ΔE: Difference in Easting between satellite position and ARGO position in

meters (ARGO - Satellite).

Once ARGO ranges 1, 2, & 3 were calibrated using this method ARGO range 4 (Stirrup Island) was calibrated by observing its' least squares solution residual with ranges 1, 2, & 3 weighted. This residual (in meters) was then divided by the lane width (84.844281 m) to obtain a calibration value for that range. (This calibration value would make the observed range fit the least squares model).

The final calibration values used for the rig move were:

 ΔR_1 (Spotted Island) = 0.63

 ΔR_2 (Cape Harrison) = 0.71

 ΔR_3 (Cape Harrigan) = 0.51

 ΔR_4 (Stirrup Island) = 0.32

(Values in fractional lane)

4.3.2 Ongoing Accuracy Checks

As a check on the calibration values determined and to evalutate their accuracy, further satellite passes were collected and compared to the ARGO positions. In a properly calibrated system the mean comparisons are range differences with a magnitude of +/- 10 meters. Larger variations are accounted for by a change in equipment performance (ie. cracked cable, poor grounding) or physical influence (ie. ice flows and land path changes). Table 7 is a summary of daily meaned ARGO/Satellite positions obtained after calibrating.

TABLE 7
DAILY MEANED ARGO/SATELLITE COMPARISONS

	No. of		Dail	y Mean V	alues	
Date	Passes	ΔR_1	ΔR_2	ΔR_3	ΔN	$\Delta \mathbf{E}$
28 June 1983	9	3.3	-4.2	-5.2	-4.7	4.2
1 July 1983	5	-15.6	-5.2	-1.0	14.4	6.6
2 July 1983	11	-13.4	2.5	6.1	-8.5	3.5

NOTE:

Between the period 28 June, 1983 at approximately 23:55 G.M.T. and 1 July, 1983 at 10:27 G.M.T. the Balder Cabot made a trip to Cartwright, Labrador and then back to the Pining E-16 location. No ARGO/Satellite comparisons were made for accuracy check purposes during this time period.

 ΔR_1 , ΔR_2 , ΔR_3 , ΔN , and ΔE represent the same values as in Table 6 only they are daily means as opposed to single ARGO/Satellite comparisons.

As a further indication of the validity of the ARGO calibration and system accuracy the magnitude and sign (signature) of the least squares generated range residuals can be observed and monitored directly after calibration

values have been applied. Directly after the ARGO calibration on the 27 June 1983 a mean of 12 such least squares positions yielded range residuals of:

Range 1 (Spotted Island) residual = -1.0 m

Range 2 (Cape Harrison) residual = 2.2 m

Range 3 (Cape Harrigan) residual = -1.0 m

Range 4 (Stirrup Island) residual = -1.2 m

On the 1 July 1983 when the final position of the Pelerin on Pining E-16 was determined an identical analysis yielded residuals of:

Range 1 (Spotted Island) residual = 0.3 m

Range 2 (Cape Harrison) residual = -1.0 m

Range 3 (Cape Harrigan) residual = 0.9 m

Range 4 (Stirrup Island) residual = 0.1 m

As can be seen from a comparison of the residuals on both dates no significant changes in the residuals occurred. This indicates that the accuracy of the ARGO system is within the same order on the 1 July 1983 and on the 27 June 1983 right after calibrating.

A final check is observed when a comparison of the primary position of the Pelerin at Pining E-16 determined by ARGO is made with the satellite confirmation position. Both systems agreed within 6 m.

4.4 Final Position of Well Location

The final position of the drillship Pelerin on Petro-Canada et al Pining E-16 was determined on 1 July 1983 after the 30 inch casing was installed. The method used to determine this position was a range resection. The measurements for this method consisted of the ships' position as determined by ARGO and ranges observed to the drillship Pelerin by a Mini-Ranger III system.

Table 8 contains the observed ARGO ranges, ARGO range residuals, least squares adjusted ARGO position of the survey vessel, and the Mini-Ranger ranges as observed from the survey ship to the drillship.

TABLE 8
RANGE RESECTION DATA FOR FINAL POSITION
RESECTION # 6

Fix	STA	ARGO Range (m)	Residual	UTM CM 57° W N/E	Mini-Ranger Range (m)
1	AR1	144050 0	0.0	0.000.045	
1	AR2	144958.2 186835.6	0.2	6,068,647	545
	AR3	356150.0	$\begin{array}{c} -1.0 \\ 1.1 \end{array}$	625716	
	AR4	499887.2	-0.2		
			0.2		
2	AR1	145141.4	-0.7	6,068,758	547
	AR2	187080.8	0.2	625,975	• • • • • • • • • • • • • • • • • • • •
	AR3	356352.8	1.5	,	
	AR4	500016.2	-1.8		
3	AR1	145379.8	-0.7	6 060 052	5.05
•	AR2	187235.2	1.0	6,068,953 626,149	565
	AR3	356449.5	0.1	020,145	
	AR4	500024.7	-1.2		
		3332111	1.2		
4	AR1	145667.4	0.3	6,069,241	555
	AR2	187257.3	-2.6	626,195	
	AR3	356388.4	3.6	,	
	AR4	499875.4	-1.1		
5	AR1	145873.6	-0.7	6,069,475	504
•	AR2	187170.7	1.1		564
	AR3	356252.7	0.1	626,133	
	AR4	499678.5	-1.3		

TABLE 8 (Cont'd)

Fix	STA	ARGO Range (m)	Residual	UTM CM 57° W N/E	Mini-Ranger Range (m)
6	AR1	145964.4	1 1	C 000 000	510
0	AR1 AR2	186953.5	1.1	6,069,636	510
	AR2		-2.8	625,926	
		356000.7	1.8		
	AR4	499413.8	1.1		
7	AR1	145972.0	-0.7	6,069,717	505
	AR2	186699.8	0.8	625,682	000
	AR3	355745.4	0.5	,002	
	AR4	499177.1	5		
8	AR1	145863.4	-0.6	6,069,690	525
	AR2	186419.9	1.5	625,399	
	AR3	355490.7	-0.9	•	
	AR4	498976.0	-0.7		
9	AR1	145601.3	2.1	6,069,496	545
	AR2	186194.2	-5.1	625,148	940
	AR3	355319.4	2.9	020,140	
	AR4	498904.7	2.3		
	1	100001	2.0		
10	AR1	145310.3	0.0	6,069,186	456
	AR2	186226.4	1.2	625,158	
	AR3	355441.5	-2.1	- /	
	AR4	499111.8	1.0		
11	AR1	145056.6	2.3	6,068,901	486
11	AR2	186323.1	-5.0	625,222	400
	AR3	355596.0	$\frac{-3.0}{2.2}$	020,222	
	AR4	499340.0	2.9		
		10001010	2.0		
12	AR1	144928.5	0.7	6,068,705	515
	AR2	186544.6	-1.0	625,430	
	AR3	355862.4	-0.2	,	
	AR4	499628.5	1.3		

AR1: Spotted Island ARGO range in meters.
AR2: Cape Harrison ARGO range in meters.
AR3: Cape Harrigan ARGO range in meters.
AR4: Stirrup Island ARGO range in meters.
Residual: Residual computed for that range in meters.

N/E: Northing and Easting computed from the ranges using a least squares solution.

TB 33356

The ARGO derived positions (Northing & Easting) and observed Mini-Ranger III ranges (with a +16 m calibration value applied) were then entered into a McElhanney developed least squares range resection program, yielding the Mini-Ranger III transponder position on the drillship Pelerin and the residuals (Table 9) of each Mini-Ranger range.

TABLE 9
COMPUTED MINI-RANGER III RESIDUALS
RESECTION # 6

Fix	1:	-0.44	m	
Fix	2:	0.36	m	
Fix	3:	-2.52	m	
Fix	4:	-0.54	m	
Fix	5:	-3.30	m	
Fix	6:	3.12	m	
Fix	7:	-1.07	m	
Fix	8:	-0.98	m	
Fix	9:	1.35	m	
Fix	10:	-3.57	m	
Fix	11:	-0.85	m	
Fix	12:	1.72	m	

Final Mini-Ranger III Transponder Position onboard Pelerin:

Latitude:	540 45' 22.50" N	(NAD 27)
Longitude:	55° 02' 52.39" W	(11111111111111111111111111111111111111

The Mini-Ranger III transponder was offset from the drillstem by 59.5 m forward and 1.0 m starboard. The drillships heading as determined by its gyro was 270°.

MB 33356

With the above offset and drillship heading the final position of the Pelerin drillstem for Petro-Canada et al Pining E-16 is:

Latitude: 54° 45' 22.47" N (NAD 27)
Longitude: 55° 02' 49.06" W

The proposed location for the Pelerin at Petro-Canada et al Pining E-16 was:

Latitude: 54° 45' 22.46" N Longitude: 55° 22' 48.41" W

A geographic inverse between the actual final position and the proposed location shows a difference of 11.6 m at 91°. (Final position to design location).

4.5 Final Position Confirmation

The final position of Petro-Canada et al Pining E-16 was confirmed by a doppler satellite point positioning method. Due to frequent changes in the drillship's heading several 3 D satellite strings had to be started. Table 10 shows the final position of each string.

TABLE 10
FINAL BROADCAST EPHEMERIS POSITIONS OF SATELLITE STRINGS
(1107 RS Antenna Position)

10	54º 45' 23.10" N	55° 02' 49.20" W
5	540 45' 22.62" N	55° 02' 48.00" W
12	54° 45' 20.40" N	550 02' 46.98" W
	5	5 54° 45' 22.62" N

These Broadcast Ephemeris satellite antenna coordinates were then traversed back to the drillstem using the rig's heading obtained from the gyro and the measured offset. Table 11 shows the drillstem coordinates computed from each satellite string.

TABLE 11
BROADCAST EPHEMERIS DRILLSTEM COORDINATES
FOR EACH SATELLITE STRING

			Drillstem Co	ordinates	
String	Rig Heading	Rig Heading Offset Latitude		Longitude	
1	2700	59 m forward	54º 45' 23.10" N	EEO 001 4E 0011 TV	
2	3000	59 m forward	540 45' 21.67" N	55° 02' 45.90" W 55° 02' 45.14" W	
3	2000	59 m forward	540 45' 22.19" N	55° 02' 45.85" W	

NOTE: Satellite antenna on center line of rig. (No port or starboard offset.)

By taking the number of passes in each string as a weight factor and the Broadcast Ephemeris drillstem coordinates listed in Table 11, a weighted mean Broadcast Ephemeris latitude and longitude was computed for the drillstem.

Broadcast Ephemeris Drillstem Position (NWL 10 D) (Weighted Mean)

Latitude: 540 45' 22.42" N Longitude: 550 02' 45.74" W

The above Broadcast Ephemeris position was then converted to local datum (NAD 27) using datum shift values for station Goose Bay (GSC 650001):

 $\Delta X = -38 \text{ m}, \quad \Delta Y = 158 \text{ m}, \quad \Delta Z = 182 \text{ m}$

a geoidal height of 12.3 m (obtained from GEM 10 B coefficients in the Magnavox receiver) and an antenna height above Mean Sea Level of 24.1 m.

The NAD 27 confirmation position as computed from 27 3 D satellite passes is:

Latitude:

540 45' 22.29" N

(NAD 27)

Longitude:

550 02' 49.06" W

5.0 CONCLUSIONS AND COMPARISONS

5.1 Position Comparisons

The final NAD 27 position of Petro-Canada et al Pining E-16 as determined by ARGO is:

Latitude:

540 45' 22.47" N

Longitude:

550 02' 49.06" W

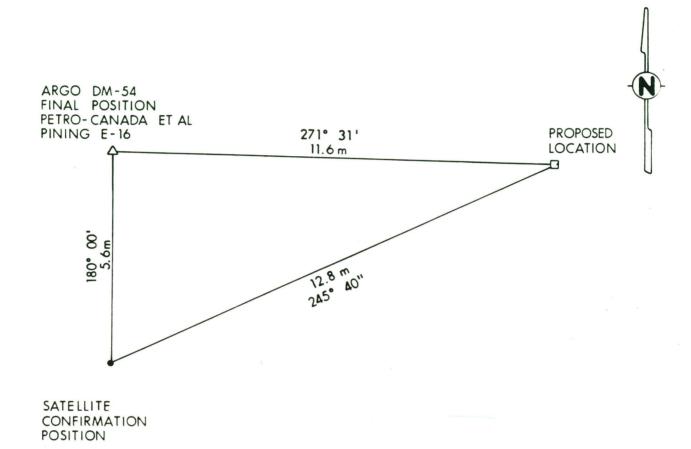
The NAD 27 confirmation position as determined by a doppler satellite point position is:

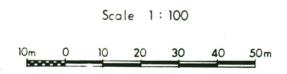
Latitude:

540 45' 22.29" N

Longitude:

550 02' 49.06" W


Figure 4 shows the two positions relative to proposed location.


5.2 Survey Accuracy Analysis

The Petro-Canada survey requirement to be met was that the final drillstem position be within a 100 m radius of the proposed location. As can be seen from Section 4.4 and Figure 4 the ARGO Position for the drillship Pelerin at Petro-Canada et al Pining E-16 placed the rig only 11.6 metres from the proposed location and the satellite position placed it 12.8 m from the design location, well within the 100 m tolerance requirement.

The Canada Oil and Gas Lands Administration (COGLA) require that the survey system used be sufficient to ensure a survey connection to the nearest geodetic shore control with at least fourth order accuracy. To accomplish this objective we enter all the observed ARGO (shore to vessel) and Mini-Ranger (vessel to rig) ranges into program GEOPAN (documentation available from the Geodetic Survey of Canada). the coordinates of the four registered ARGO shore stations (section 3.1) are held fixed in the adjustment.

SKETCH SHOWING COMPARISON BETWEEN ARGO AND SATELLITE POSITIONS WITH RESPECT TO PROPOSED LOCATION

FIGURE 4

The final output is the error ellipse information for all positions obtained relative to the fixed control. The error ellipse of interest is the semi-major axis obtained for station PELERIN, whose value is 1.86 m.

Using the formula obtained from Surveying Offshore Canada Lands, Third Edition, December 1982.

$$r = c (d + 0.2)$$

where:

r = the maximum dimension (semi-major axis) in cm.

c = a constant depending on the order.

d = the distance in km between the points under consideration.

therefore, we input

c = 30

d = 145.477 PELERIN to Spotted Island ARGO Station C.L.S.R. 64857

r = 30 (145.477 + 0.2)

r = 4370 cm.

r = 43.7 m

Thus, the accuracy of the determined positions of the PELERIN at PINING E-16 relative to Spotted Island ARGO Station is well within 4th order accuracy.

PB 33356

5.3 Problems

Upon departing St. John's it was observed that the MX 1107 Satellite Navigator was not updating. This problem was isolated to be a faulty cable between antenna and receiver. This cable was replaced and no further problem was experienced for the remainder of the job.

The Mini-Ranger III transponders established at Quakers Hat and Cape Harrison were both faulty and would not respond when interrogated. These were originally deployed for the purpose of calibrating the ARGO System and calibration had to be determined by Satellite Comparisons accumulated while around location. The ARGO system was calibrated later by base-line crossings and extensions, however, the values determined were found to be unsuitable while working near location due to the extensive ice flows between the Pining site and the shore stations.

The ice situation along the Labrador Coast was the worst observed in recent years and caused continuous problems with the ARGO calibration. One of the constants assumed by the ARGO system is a known propagation velocity, however, the velocity over salt water is not the same as that over ice and compensations had to be made frequently in order to maintain optimum positional accuracy.

Due to frequent changes in the drillships heading, problems were encountered onboard the rig when trying to collect 3 D Satellite String data.

5.4 Recommendations

When used during ice conditions as existed along the coast of Labrador this year, the ARGO position is less than optimum and therefore it is recommended that the satellite position be used as prime. In either case, time must be allowed for the surveyor onboard the drillship to complete a proper 3 D string with the drillship maintaining a constant heading. It is therefore recommended that the method used for determining the final position on a new wellsite be left to the discretion of the surveyor and that he be given full cooperation by the drillship and/or survey vessel crew in achieving that objective. Another possible solution is to use a long baseline acoustic array. The array could be deployed prior to the rigs arrival and calibrated using ARGO or alternatively it can be deployed for a site survey and left in place until the rig move. Once in location and calibrated it is a stand alone system which can be monitored by the drilling vessel during final positioning. It can be used for re-entry when a rig is forced off location by ice, requires repairs or another rig needs to re-occupy the same hole.

APPENDIX A OUTPUT FROM GEOPAN USED FOR ACCURACY ANALYSIS

OPTIONS IN EFFECT

PREANALYSIS OR ADJUSTMENT ADJUSTMEN	-
FIXED STATIONS WEIGHTED STATIONS BLAHA STATION AR1 NONE NONE AR2 AR3 AR4	5
MAP PROJECTIONUSER DEFINED TRANSVERSE MERCATO	R
CONVENTIONAL LINEAR UNIT METR	E
TEST USED FOR REJECTION OF RESIDUALS MAXIMUM TA	U
MULTIPLY INVERSE OF NORMAL EQUATIONS BY ESTIMATED VARIANCE FACTOR? N	0
MAXIMUM NUMBER OF ITERATIONS ALLOWED	5
CRITERION FOR SOLUTION CONVERGENCE 0.01000	0
MAKE OBSERVATION REDUCTIONS (TERRAIN TO ELLIPSOID)?	0
MAKE OBSERVATION REDUCTIONS (ELLIPSOID TO MAPPING PLANE)? YE	S
REDUCTIONS FROM TERRIAN TO MAPPING PLANE MADE FOR AZIMUTHS	0
ERROR ELLIPSES COMPUTED ARSOLUTE ONL	Y

SPECIFICATIONS OF THE MAP PROJECTION

PROJECTION USED: USER DEFINED TRANSVERSE MERCATOR

ORIGIN: EQUATOR:

LATITUDE = 0 0.000

NORTHING (Y) = 0.000 METRES

CENTRAL MERIDIAN: LONGITUDE = -57 0 0.000 EASTING (X)= 50000.000 METRES

SCALE AT THE CENTRAL MERIDIAN : 0.9996000

REFERENCE ELLIPSOID :

SEMI-MAJOR AXIS= 6378206.500 METRES

SEMI-MINOR AXIS= 6356583.800 METRES

TRANSLATION COMPONENTS (FROM GEOCENTRE) USED:

X0= -38,000 METRES

YO= 158.000 METRES

Z0= 182,000 METRES

INITIAL APPROXIMATE COORDINATES

FREE STATIONS:

STATION	X (EASTING)	Y (NORTHING)	ORTHOMETRIC HEIGHT	GEOID HEIGHT	DEFLECTION COMPONENTS	LATITUDE	LONGITUDE	POINT MERIDIAN SCALE CONVERGENCE	Ε
PELERIN	625628 .669	6069199.853	0.000	0.000	0.0 0.0	54 45 22.49	-55 2 52.25	0.999794 1 35 40.3	3
R11	625716.000	6068647.000	0.000	0.000	0.0 0.0	54 45 4.53	-55 2 48.23	0.999794 1 35 43.3	3
R12	625975 .00 0	6068758,000	0.000	0.000	0.0 0.0	54 45 7.89	-55 2 33.58	0.999795 1 35 55.3	3
R13	626149.000	6068953.000	0.000	0.000	0.0 0.0	54 45 14.04	-55 2 23.55	0.999795 1 36 3.6	6
R14	626195.000	6069241.000	0.000	0.000	0.0 0.0	54 45 23.31	-55 2 20,52	0.999795 1 36 6.3	3
R15	626133.000	6069475.000	0.000	0.000	0.0 0.0	54 45 30.93	-55 2 23,62	0.999795 1 36 3.9	9
R16	625926.000	6069636,000	0.000	0.000	0.0 0.0	54 45 36.32	-55 2 34.95	0.999795 1 35 54.8	3
R17	625682+000	6069717.000	0.000	0.000	0.0 0.0	54 45 39.16	-55 2 48.46	0.999794 1 35 43.8	3
R18	625399,000	6069690.000	0.000	0.000	0.0 0.0	54 45 38.54	-55 3 4.33	0.999793 1 35 30.8	3
R19	625148.000	6069496+000	0.000	0.000	0.0 0.0	54 45 32.49	-55 3 18.66	0.999792 1 35 19.0)
R110	625158.000	6069186+000	0.000	0.000	0.0 0.0	54 45 22.46	-55 3 18.58	0.999792 1 35 18.8	3
R111	625222.000	6038901.000	0.000	0.000	0.0 0.0	54 45 13.19	-55 3 15.45	0.999792 1 35 21.2	2
R112	625430.000	6068705.000	0.000	0.000	0.0 0.0	54 45 6,67	-55 3 4.12	0.999793 1 35 30.3	3

FIXED STATIONS:

STATION	X (EASTING)	Y (NORTHING)	ORTHOMETRIC HEIGHT		DEFLECTION COMPONENTS		LONGITUDE	POINT SCALE	MERIDIAN CONVERGENCE
AR1	582840.078	5930216.223	0.000	0.000	0.0 0.0	53 30 58.67	-55 45 2.43	0.999684	1 0 16,4
AR2	439814.929	6086596.012	0.000	0.000	0.0 0.0	54 55 28.78	-57 56 20.67	0.999644	4 0-46 6.8
AR3	292168.385	6193226+256	0.000	0.000	0.0 0.0	55 50 29,96	-60 19 9.70	1.000130	-2 44 51.8
AR4	241939.830	6389805.132	0.000	0.000	0.0 0.0	57 34 10.98	-61 18 56.76	1.000417	7 -3 38 40.9

TB 33356

	AT	FROM	TO	OBSERVED	STD.DEV	REDUCED OBS	MISCLOSURE
DISTANCE	AR1	AR1	R11	144958,200	0.200	144919.814	-1.131
DISTANCE	∆R2	AR2	R11	186835+600	1.000	186769.920	-4.358
DISTANCE	AR3	AR3	R11	356150,000	1,100	356055.370	-1.999
DISTANCE	AR4	AR4	R11	499897.200	0.200	499789.256	-3.924
DISTANCE	R11	R11	PELERIN	561.000	0.440	560.884	-1.176
DISTANCE	AR1	AR1	R12	145141.400	0.700	145103.017	-1.516
DISTANCE	AR2	AR2	R12	187080,800	0.200	187015.072	-2,327
DISTANCE	AR3	AR3	R12	354352.800	1.500	356258.132	-0.918
DISTANCE	AR4	ARA	R12	500016,200	2.800	499918.228	-5.057
DISTANCE	R12	R12	PELERIN	563.000	0.360	562.884	-1.476
DISTANCE	AR1	AR1	R13	145379,800	0.700	145341.388	-1.937
DISTANCE	AR2	AR2	R13	187235.200	1.000	187169,443	-1.973
DISTANCE	AR3	AR3	R13	356449.500	0.100	356354.818	-2.614
DISTANCE	AR4	∆R4	R13	500024.700	2.200	499926.724	-4.657
DISTANCE	R13	R13	PELERIN	581.000	2.520	580,880	-4.963
DISTANCE	AR1	AR1	R14	145667.400	0.300	145628.922	-0.841
DISTANCE	AR2	AR2	R14	187257.300	2.600	187191.542	-5.198
DISTANCE	∆R3	AR3	R14	356388.400	3.600	356293.737	1.258
DISTANCE	AR4	AR4	R14	499875.400	1.100	499777.452	-4.234
DISTANCE	R14	R14	PELERIN	571.000	0.540	570.883	-3.059
DISTANCE	AR1	AR1	R15	145873.600	0.700	145835.055	-1.985
DISTANCE	AR2	AR2	R15	187170.700	1.100	187104.963	-1.910
DISTANCE	AR3	AR3	R15	356252,700	0.100	356158.069	-2.573
DISTANCE	AR4	∆R4	R15	199678.500	1.300	499580.592	-4.646
DISTANCE	R15	R15	PELER1N	580.000	3.300	579.881	-5.376
DISTANCE	AR1	ARi	R16	145961.400	1.100	145925.789	-0.223
DISTANCE	AR2	AR2	R16	186953.500	3.800	186887,809	-5.566
DISTANCE	AR3	AR3	R16	356000.700	1.800	355906.123	-0.662
DISTANCE	AR4	AR4	R16	499413,800	1.100	499315.946	-2.103
DISTANCE	R16	R16	PELERIN	526.000	3.120	525.892	1.962
INISTANCE	AR1	AR1	R17	145972.000	0.700	145933.339	-2.201
DISTANCE	AR2	AR2	R17	186699.800	0.800	186634.163	-2,255
DISTANCE	AR3	AR3	R17	355745.400	0.500	355650+875	-2.358
DISTANCE	AR4	AR4	R17	499177.100	1,500	499079.296	-4.863
DISTANCE	R17	R17	PELERIN	521.000	1.070	520.892	-1.003
DISTANCE	AR1	AR1	R18	145863.400	0.600	145824.711	-2,229
DISTANCE	AR2	AR2	R18	186419.900	1.500	186354.320	-1.803
DISTANCE	AR3	AR3	R18	355490.700	0.900	355396,225	-3.696
DISTANCE	AR4	AR4	R18	493976.000	1,700	498878.239	-4.104

						THE COLUMN TWO IS NOT THE OWNER.	the last the walls
DISTANCE	R18	R18	PELERIN	541.000	0.980	540.888	0.399
DISTANCE	AR1	AR1	R19	145601.300	2.100	145562.631	1.158
DISTANCE	AR2	∆R2	R19	186194.200	5.100	186128.663	-8.386
DISTANCE	AR3	AR3	R19 -	355319,400	2.900	355224.955	-0.237
DISTANCE	AR4	AR4	R19	198904.700	2.300	498806.957	-1.561
DISTANCE	R19	R19	PELERIN	561.000	1.350	560.884	3.692
DISTANCE	AR1	AR1	R110	145310.300	0.100	145271.710	-1.598
DISTANCE	AR2	AR2	R110	186226.400	1.200	186160.853	-1.882
DISTANCE	AR3	AR3	R110	355441.500	2.100	355347.023	-4.837
DISTANCE	AR4	AR4	R110	499111.800	1.000	499014.016	-2.438
DISTANCE	R110	R110	PELERIN	472,000	4.100	471.902	-1.029
DISTANCE	AR1	AR1	R111	145056.600	2.300	145018.090	-1,902
DISTANCE	AR2	AR2	R111	186323.100	5.000	186257.529	-7.977
DISTANCE	AR3	AR3	R111	355596.000	2.200	355501.486	0.244
DISTANCE	AR4	AR4	R111	499340.000	2,900	499242.171	1.132
DISTANCE	R111	R111	PELERIN	502.000	0.850	501.896	2,775
DISTANCE	AR1	AR1	R112	144928.500	0.700	144890.065	-0.304
DISTANCE	AR2	AR2	R112	186544.600	1.000	186478.981	-3.666
DISTANCE	AR3	AR3	R112	355862.400	0.200	355767.828	-2.671
DISTANCE	AR4	AR4	R112	499628.500	1.300	499530.611	-2.028
DISTANCE	R112	R112	PELERIN	531.000	1.720	530.890	2.354

PB 33356

ITERATION #	0
-------------	---

			TILIMITUR T	V			
STATION	OLD X	OLD Y	DX	DY	NE₩ X	NE₩ Y	
PELERIN	625628.669	6069199.853	-0.00759	0.21891	625628.661	6069200+072	
R11	625716.000	6068647,000	4.70997	-0.30376	625720.710	6068646.696	
R12	625975.000	6068758,000	2.40484	0.39977	625977.405	6068758.400	
R13	626149.000	6068953.000	3.09016	0.81260	626152.090	6068953.813	
R14	626195.000	6069241.000	3.41172	-0.25678	626198.412	6069240,743	
R15	626133.000	6069475.000	3.05433	0.81378	626136.054	6069475.814	
R16	625926.000	6069636+000	1.83736	-0.63846	625927.837	6069635.362	
R17	625682.000	6069717,000	2,97867	0.98520	625684.979	6069717.985	
R18	625399.000	6069690.000	3.86388	1.10720	625402.864	6069691.107	
R19	625148.000	6069496.000	2.46801	-1.60637	625150.468	6069494.394	
R110	625158.000	6069186.000	3.08165	0.72714	625161.082	6069186.727	
R111	625222,000	6068901.000	1.72775	2,43662	625223.728	6068903.437	
R112	625430.000	6068705.000	2.83157	-0.13613	625432.832	6068704.864	

ITERATION # 1

STATION	OLD X	OLD Y	DX	DY	NEW X	NEW Y
PELERIN	625628.661	6069200.072	-0.00336	-0.01185	625628.658	6069200.060
R11	625720.710	6068646+696	-0.00023	0.00091	625720,710	6068646.697
R12	625977.405	6068758,400	0.00016	-0.00271	625977.405	6068758.397
R13	626152.090	6068953.813	0.00019	0.00052	626152.090	6068953.813
R14	626198+412	6069240.743	-0.00377	0.00105	626198.408	6069240.744
R15	626136.054	6069475,814	-0.00015	-0.00039	626136.054	6069475.813
R16	625927,837	6069635.362	-0,00202	-0.00107	625927+835	6069635.360
R17	625584.979	6069717.985	-0.00141	-0.00556	625684.977	6069717.980
R18	625402,864	6069691.107	0.00551	-0,00527	625402.869	6069691.102
R19	625150.468	6069494. 3 94	0.00239	-0.00021	625150.470	6069494.393
R110	625161.082	6069186.727	-0.00015	0.00002	625161.081	6069186.727
R111	625223.728	6068903.437	-0.00550	-0.00599	625223.722	6068903.431
E112	625432.832	6068704.864	-0.00034	-0.00060	625432.831	6068704.863

ITERATION # 2

STATION	OLI: X	OLD Y	DΧ	DY	NEW X	NE₩ Y
PELERIN	625628+658	6069200.060	-0.00001	0.00000	625628+658	6069200+060
Rii	625720.710	6068646.697	0.00000	0.00000	625720.710	6068646.697
R12	625977.405	6068758.397	0.00000	0.00001	625977.405	6068758.397
RiZ	A2A152,090	4048957.813	000000	0.00000	202150 AOA	ZAZ0057, 030

TB 33356

R14	626198.408	6069240.744	0.00000	0.00000	626198.408	6069240.744	
R15	626136.054	6069475.813	0.00000	0.00000	626136.054	6069475.813	
R16	625927.835	6069635.360	0.00000	0.00000	625927.835	6069635.360	
R17	625684.977	6069717,980	0.00000	0.00000	625684,977	6069717.980	
R18	625402.869	6069691.102	0.00000	0.00000	625402.869	6069691.102	
R19	625150.470	6069494,393	-0.00002	-0.00003	625150.470	6069494.393	
R110	625161.081	6069186.727	0.00000	0.00000	625161.081	6069186.727	
R111	625223.722	6068903.431	0.00000	-0.00001	625223.722	6068903.431	
R112	625432.831	6068704.863	0.00000	0.00000	625432.831	6068704.863	

FINAL ADJUSTED COORDINATES

FREE STATIONS:

STATION	X (EASTING)	Y (NORTHING)	LATITUDE	LONGITUDE	POINT SCALE	MERIDIAN CONVERGENCE
PELERIN	625628.658	6069200.060	54 45 22.49342	-55 2 52.24841	0.9997936	1 35 40.34
R11	625720.710	6068646.697	54 45 4.51851	-55 2 47.96396	0.9997939	1 35 43.49
R12	625977.405	6068758.397	54 45 7.89872	-55 2 33.44106	0.9997947	1 35 55,42
R13	626152.090	6068953.813	54 45 14.05938	-55 2 23.37105	0.9997952	1 36 3.77
R14	626198,408	6069240.744	54 45 23.29490	-55 2 20:333332	0.9997954	1 36 6.43
R15	626136+054	6069475.813	54 45 30.95178	-55 2 23.45186	0.9997952	1 36 4.04
R16	625927.835	6069635.360	54 45 36.29847	-55 2 34.84395	0.9997945	1 35 54.83
R17	625684.977	6069717.980	54 45 39.18875	-55 2 48.29343	0.9997938	1 35 43.90
R18	625402.869	6069691.102	54 45 38.57349	-55 3 4.10814	0.9997929	1 35 30.97
R19	625150+470	6069194.393	54 45 32.43981	-55 3 18.52504	0.9997922	1 35 19.07
R110	625161.081	6069186.727	54 45 22,48239	-55 3 18,40884	0.9997922	1 35 18.97
R111	625223.722	6068903.431	54 45 13.26626	-55 3 15.34634	0.9997924	1 35 21.29
R112	625432+831	6068704.863	54 45 6.65817	-55 3 3.96537	0.9997930	1 35 30.46
			FIXED STATIONS			
STATION	X (EASTING)	Y (NORTHING)	LATITUDE	LONGITUDE	POINT SCALE	MERIDIAN CONVERGENCE
AR1	582840.078	5930216.223	53 30 58.67394	-55 45 2,42910	0.9996842	1 0 16.37
AR2	439814.929	6086596.012	54 55 28,77785	-57 56 20.67388	0.9996444	0-46 6.82
AR3	292168.385	6193226.256	55 50 29,95977	-60 19 9.70272	1.0001298	-2 44 51.76
AR4	241939.830	6388805.132	57 34 10,98249	-61 18 56.75567	1.0004166	-3 38 40.89

TB 33354

		AT	FROM	TO	REDUCED OBS	STD.DEV	RESIDUAL	STD.DEV	∩DJ.OBSERVATION	
1	DISTANCE	AR1	AR1	R11	144919.814	0.200	-0.027	0.200	144919.787	
2	I:ISTANCE	AR2	AR2	R11	186769,920	1.000	0.359	1.000	186770.279	
3	DISTANCE	AR3	AR3	R11	356055.370	1.100	2.519	1.100	356057.888	
4	DISTANCE	AR4	AR4	R11	499789,256	0.200	-0.114	0.200	499789.143	
5	DISTANCE	R11	R11	PELERIN	560.884	0.440	0.083	0.440	560.967	
6	DISTANCE	AR1	AR1	R12	145103.017	0.700	-0.422	0.700	145102.595	
7	DISTANCE	AR2	∧R2	R12	187015.072	0.200	0.029	0.200	187015.101	
8	DISTANCE	AR3	AR3	R12	356258.132	1.500	1.197	1.500	356259.329	
9	DISTANCE	AR4	AR4	R12	199918.228	2.800	-3.463	2.800	499914.764	
10	DISTANCE	R12	R12	PELERIN	562.884	0.360	-0.131	0.360	562,753	
11	DISTANCE	AR1	AR1	R13	145341.388	0.700	-0.240	0.700	145341.148	
12	DISTANCE	AR2	AR2	R13	187169.443	1.000	1.027	1.000	187170.470	
13	DISTANCE	AR3	AR3	R13	356354.818	0.100	-0.001	0.100	356354.817	
14	DISTANCE	AR4	AR4	R13	499926.724	2.200	-2.802	2.200	499923.921	
15	DISTANCE	R13	R13	PELERIN	580.880	2.520	-2.418	2.520	578.463	
16	DISTANCE	AR1	AR1	R14	145628.922	0.300	-0.070	0.300	145628.851	
17	DISTANCE	AR2	AR2	R14	187191.542	2.600	-1.781	2.600	187189.761	
18	DISTANCE	AR3	AR3	R14	356293.737	3.600	4.542	3.600	356298.279	
19	DISTANCE	AR4	AR4	R14	499777.452	1.100	-1.450	1.100	499776.002	
20	DISTANCE	F14	R14	PELERIN	570.883	0.540	0.318	0.540	571.201	
21	DISTANCE	AR1	AR1	R15	145835.055	0.700	-0.302	0.700	145834.753	
22	DISTANCE	AF-2	AR2	R15	187104.963	1.100	1.057	1,100	187106.020	
23	DISTANCE	AR3	AR3	R15	356158.069	0.100	0.008	0.100	356158.077	
24	DISTANCE	AR4	AR4	R15	499580.592	1.300	-2.818	1.300	499577.774	
750	I'ISTANCE	R15	R15	PELERIN	579.881	3.300	-2.394	3.300	577 + 187	
26	DISTANCE	AR1	AR1	R16	145925.789	1.100	-0.292	1.100	145925+497	
27	DISTANCE	AR2	AR2	R16	186887.809	3.800	-3.681	3.800	184884.129	
28	MISTANCE	ARB	AR3	R16	355906.123	1.800	1.281	1.800	355907.404	
29	DISTANCE	AR4	AR4	R16	199315.946	1.100	-0.283	1.100	499315.663	
30	DISTANCE	R16	R16	PELERIN	525.892	3.120	2.307	3.120	528.198	
31	DISTANCE	AR1	AR1	R17	145933.339	0.700	-0.390	0.700	145932.949	
32	DISTANCE	AR2	AR2	R17	186634.163	0.800	0.622	0.800	186634.785	
33	DISTANCE	AR3	AR3	R17	355650.875	0.500	0.094	0.500	355650.969	
34	DISTANCE	AR4	AR4	R17	499079.298	1.500	-3.200	1.500	499076.095	
35	DISTANCE	R17	R17	PELERIN	520.892	1.070	0.080	1.070	520.973	
36	DISTANCE	AR1	AR1	R18	145824.711	0.600	-0.046	0.600	145824.665	A
37	DISTANCE	AR2	AR2	R18	186354.320	1.500	1.951	1.500	186356.271	
38	DISTANCE	AR3	AR3	R18	355396+225	0.900	-0.451	0.900	355395.7/McEll\	aivievj
39	DISTANCE	AR4	AR4	R18	498878.239	1.700	-1.835	1.700	498876.404	

40	NISTANCE	R18	R18	PELERIN	540.888	0.980	-0,423	0.980	540.465
41	DISTANCE	AR1	AR1	R19	145562.631	2.100	0.339	2.100	145562,969
42	DISTANCE	AR2	AR2	R19	186128,663	5.100	-5.778	5.100	186122,885
43	DISTANCE	AR3	AR3	R19	355224.955	2,900	2,638	2,900	355227.593
44	DISTANCE	AR4	AR4	R19	498806.957	2.300	1.366	2.300	498808.323
45	DISTANCE	R19	R19	PELERIN	560.884	1.350	0.628	1.350	561,512
46	DISTANCE	AR1	AR1	R110	145271.710	0.100	-0.005	0.100	145271.705
47	DISTANCE	AR2	AR2	R110	186160.853	1,200	1.118	1.200	186161.971
48	DISTANCE	AR3	AR3	R110	355347.023	2.100	-2.204	2.100	355344.819
49	DISTANCE	AR4	AR4	R110	499014.016	1.000	-0.537	1.000	499013.479
50	DISTANCE	R110	R110	PELERIN	471.902	4.100	-4.136	4.100	467,767
51	DISTANCE	AR1	AR1	R111	145018.090	2,300	0.925	2.300	145019.016
52	DISTANCE	AR2	AR2	R111	186257.529	5.000	-6.493	5.000	186251.035
53	DISTANCE	AR3	AR3	R111	355501.486	2.200	1.007	2.200	355502.493
54	DISTANCE	AR4	AR4	R111	499242.171	2.900	0.897	2.900	499243.068
55	DISTANCE	R111	R111	PELERIN	501.896	0.850	0.062	0.850	501,958
56	DISTANCE	AR1	AR1	R112	144890.065	0.700	0.397	0.700	144890.462
57	DISTANCE	AR2	AR2	R112	186478.981	1.000	-0.835	1.000	186478.146
58	DISTANCE	AR3	AR3	R112	355767.828	0.200	0.029	0.200	355767.857
59	DISTANCE	AR4	AR4	R112	499530.611	1.300	0.233	1.300	499530.844
60	DISTANCE	R112	R112	PELERIN	530.890	1.720	1.621	1.720	532.511

a decision of the second

SUMMARY OF REJECTION OF RESIDUALS AT THE 95.000 % CONFIDENCE LEVEL

(TAU MAX CRITERION USED)

COMPUTED FACTOR FOR STANDARD DEVIATION OF RESIDUAL = 3.1434

REJECTED RESIDUALS:

OBSERVATION AT FROM TO RESIDUAL RESIDUAL CRITICAL POINT

O RESIDUALS (0 % OF THE OBSERVATIONS) WERE FLAGGED FOR REJECTION

STATISTICS SUMMARY

NUMBER OF	ITERA	TIONS	REQUIRED	FOR	CONVERGENCE>	2
MAXIMUM N	UMBER	OF ITE	RATTONS :	ALLON	IFT(>	5

NUMBER OF OBSE	RVATIONS	! NUMBER OF UNKNO	4NS
DISTANCES DIRECTIONS ANGLES	60 0	ZERO ERROR ORIENTATION	0
AZIMUTHS COORDINATES	0	: ! COORDINATES	26
TOTALS	60		26

THE NUMBER OF DEGREES OF FREEDOM IS 34

ESTIMATED VARIANCE FACTOR= 1.286112

CHI-SQUARE TEST ON THE VARIANCE FACTOR

(VARIANCE FACTOR UNKNOWN)

0.841347 < 1.000000 < 2.209314 ?

TEST ON VARIANCE FACTOR AT THE 95.000 % CONFIDENCE LEVEL PASSES

(O RESIDUALS WERE FLAGGED FOR REJECTION)

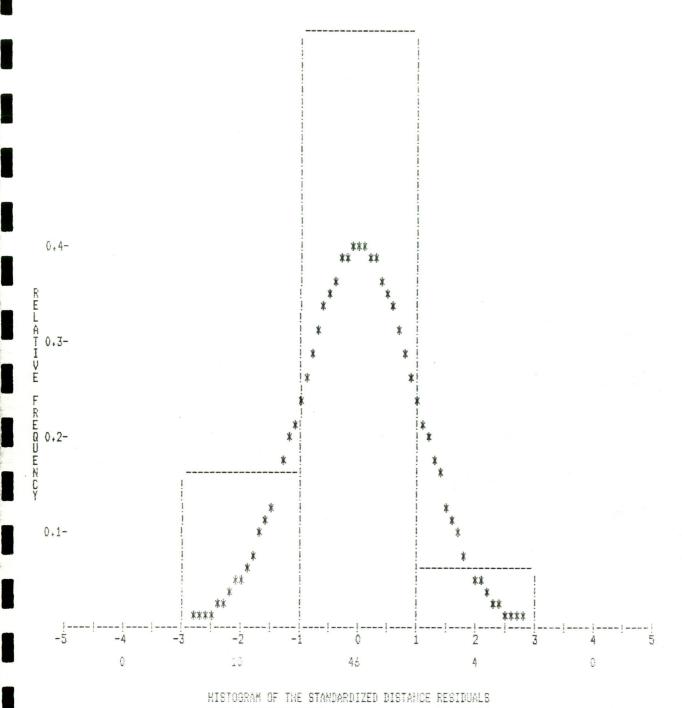
CHI-SQUARE GOODNESS OF FIT TEST

ON THE STANDARDIZED DISTANCE RESIDUALS

THE NUMBER OF CLASSES IS 3 THE NUMBER OF DEGREES OF FREEDOM FOR THE TEST IS 1

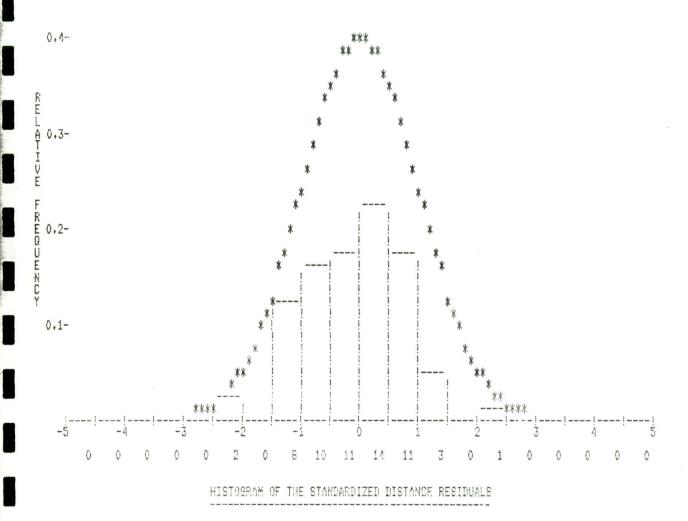
SUMMARY OF THE COMPUTATION OF THE CHI-SQUARE STATISTIC

CLASS INTERVAL (-3.0 ,-1.0) (-1.0 , 1.0) (1.0 , 3.0)	OBSERVED FREG.(0. 10 46 4	EXPECTED FRE 9 40 9	9.(E) (0-E) 1 6 -5	(0-E)**2 1 36 25	(0-E)**2/E 0+11 0+90 2+78
		TO	TAL (CHI-SQUARE S	STATISTIC)>	3.79
THE C	HT-SOHARE CRITICAL	UALLIE AT THE 95	.000 % CONFIDENCE	FUEL 19>	7.75


3.79 IS GREATER THAN 3.75

THE TEST FAILS

(SEE HISTOGRAM ON NEXT PAGE)


NOTE: THE HISTOGRAM IS FIRST PLOTTED WITH 3 CLASSES (THAT USED IN THE GOODNESS OF FIT TEST); THEN WITH 20 CLASSES SO THAT A MORE DETAILED REPRESENTATION OF THE ACTUAL RESIDUAL DISTRIBUTION IS GIVEN.

(WITH CLASSES AS USED IN THE GOODNESS OF FIT TEST; A MORE DETAILED REPRESENTATION IS PLOTTED ON THE NEXT PAGE)

/VIcEll\ar\rey

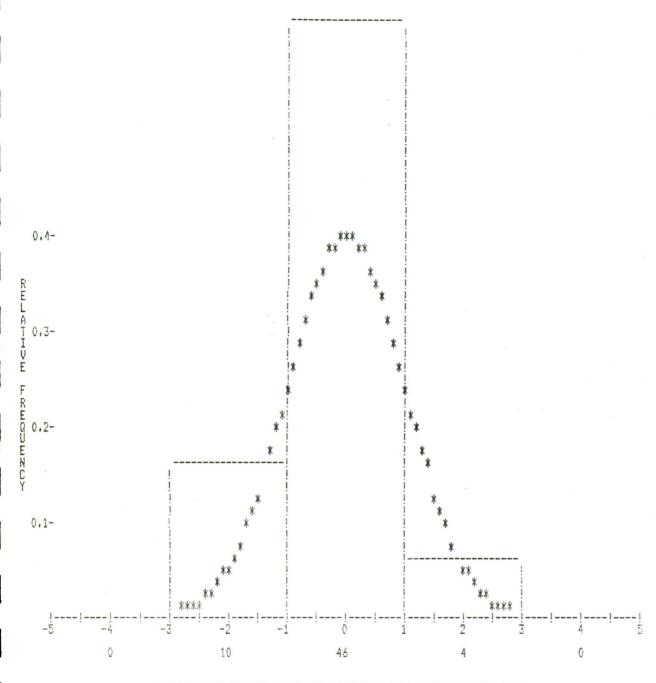
CHI-SQUARE GOODNESS OF FIT TEST

ON THE STANDARDIZED RESIDUALS (ALL RESIDUALS INCLUDED)

THE NUMBER OF CLASSES IS 3
THE NUMBER OF DEGREES OF FREEDOM FOR THE TEST IS 1

SUMMARY OF THE COMPUTATION OF THE CHI-SQUARE STATISTIC

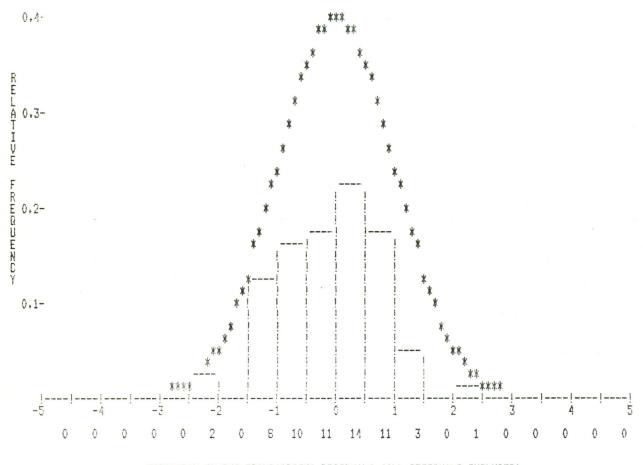
CLASS INTERVAL (-3.0 ,-1.0) (-1.0 , 1.0) (1.0 , 3.0)	OBSERVED FREQ.((10 46 4	EXPECTED FRED.(E 97 40 9	(O-E) 1 -5	(O-E)**2 1 36 25	(D-E)**2/E 0.11 0.90 2.78
		TOTAL	(CHI-SQUARE S	STATISTIC)>	3.79
THE	CHI-SQUARE CRITICAL	VALUE AT THE 95.000	Z CONFIDENCE	F LEVEL IS>	3,75


3.79 IS GREATER THAN 3.75

THE TEST FAILS

(SEE HISTOGRAM ON NEXT PAGE)

NOTE: THE HISTOGRAM IS FIRST PLOTTED WITH 3 CLASSES (THAT USED IN THE GOODNESS OF FIT TEST); THEN WITH 20 CLASSES SO THAT A MORE DETAILED REPRESENTATION OF THE ACTUAL RESIDUAL DISTRIBUTION IS GIVEN.



HISTOGRAM OF THE STANDARDIZED RESIDUALS (ALL RESIDUALS INCLUDED)

(WITH CLASSES AS USED IN THE GOODNESS OF FIT TEST; A MORE DETAILED REPRESENTATION IS PLOTTED ON THE NEXT PAGE)

HISTOGRAM OF THE STANDARDIZED RESIDUALS (ALL RESIDUALS INCLUDED)

STATION 95.000 % CONFIDENCE ELLIPSES (METRES)

FACTOR USED FOR OBTAINING THESE ELLIPSES FROM STANDARD ELLIPSES: (VARIANCE FACTOR UNKNOWN) = 2.5596 (COVARIANCE MATRIX OF PARAMETERS WAS NOT MULTIPLIED BY THE ESTIMATED VARIANCE FACTOR (1.286112)).

STATION	SEMI-MAJOR AXIS	SEMI-MINOR AXIS	AZIMUTH OF SEMI	-MAJOR AXIS AREA OF ELLIPSE
PELERIN	1.858	0.891	71 2	1 -0.52012D+01
R11	0.625	0.421	72 4 2	6 0.82629D+00
R12	1.417	0.194	7 52 4	9 0.22004D+01
R13	1.756	0.254	20 22 2	2 0.14029D+01
R14	1.963	0.760	287 32 5	6 0.46850D+01
R15	1.723	0.254	20 21 2	5 0.13767D+01
R16	2.869	2+217	59 44 1	7 0.19977D+02
R17	1,509	1.054	20 58	2 0.49945D+01
R18	1.765	1.347	82 58 3	3 0.74695D+01
R19	5,400	2.828	35 54 2	3 0.47980D+02
R110	1,912	0.256	286 48 3	6 0.15359D+01
R111	4.404	2.547	328 12 3	3 0.35240D+02
R112	1.629	0.498	20 36 2	6 0.25455D+01

TOTAL AREA OF STATION ELLIPSES = 0.13544D+03

6 33356

APPENDIX B
FINAL PLAN OF SURVEY
PETRO-CANADA ET AL PINING E-16

6 33356

PLAN AND FIELD NOTES

OF SURVEY OF OFFSHORE

EXPLORATORY WELL LOCATION

PETRO-CANADA ET AL PINING E-16 LATITUDE 54° 45' 22.47"N LONGITUDE 55° 02' 49.06"W

GRID AREA 54° 50' N. 55° 00' W SURVEYED JUNE 27 TO JULY 1, 1983

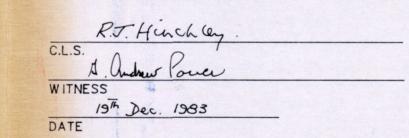
BY MCELHANNEY OFFSHORE SURVEYS LTD. PETRO-CANADA

LEGEND

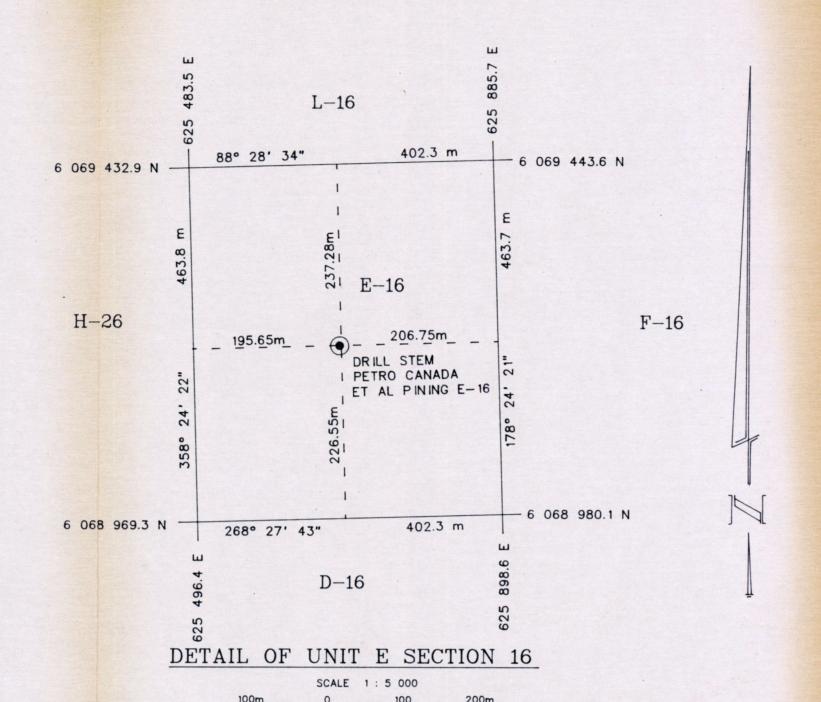
Positioning was done by the survey vessel Balder Cabot using an ARGO DM-54 positioning system with shore stations on the coast of LABRADOR. Information about the ARGO DM-54 can be obtained from the Cubic Corporation, San Diego, California. The post-processing of the ARGO DM-54 ranges was carried out using NAVPAK and GEOPAK, documentation for which is available from McElhanney Offshore Surveys Ltd. Monuments at Spotted Island, Cape Harrison, Cape Harrigan and Stirrup Island are shown on Survey control plans C.L.S.R 64857 and C.L.S.FR. 67305.

The final position was confirmed by doppler satellite single point positioning using a Magnavox MX-1107RS satellite receiver (Three Dimensional solution with 27 acceptable passes). Documentation for its program can be obtained from Magnavox of Torrance, California. The values used for the local datum shift conversion from the broadcast ephemeris datum to NAD 1927 were $\Delta x = -38$ m, $\Delta y = +158$ m, $\Delta z = +182$ m, and were obtained from the Geodetic Survey of Canada, for station Goose Bay (G.S.C. 650001)

Bearings and distances shown on the Unit Details are UTM plane referred to Zone 21, Central Meridian 57°W, using a false easting of 500 000m.

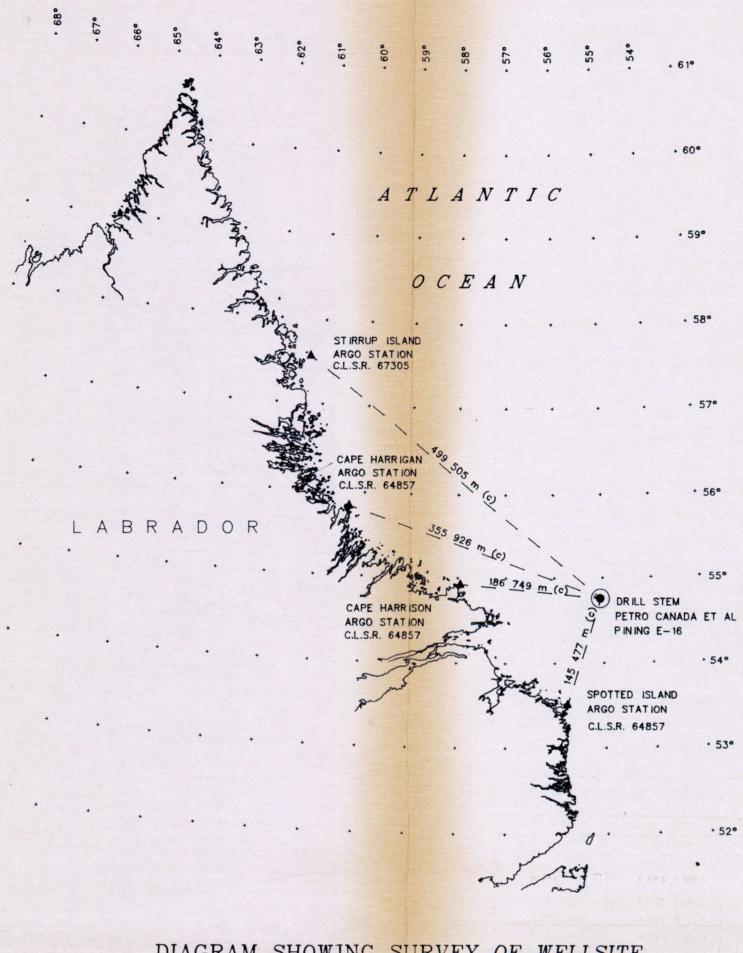

All other distances are surface distances and are not reduced to the UTM plane unless indicated.

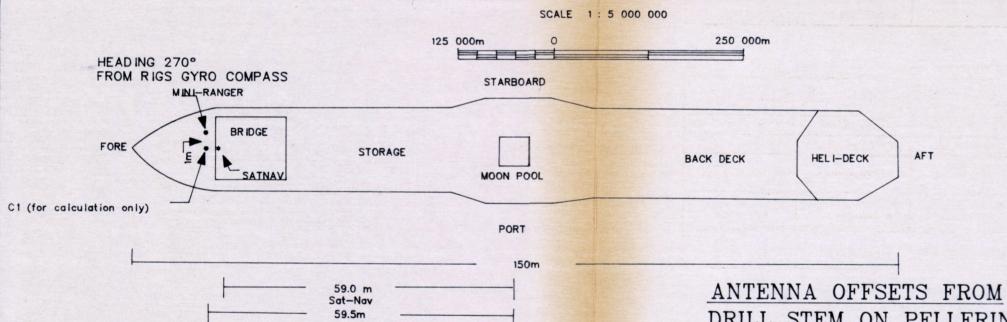
All geographic co-ordinates are referred to 1927 North American Datum (1927 NAD) unless indicated.


Water depth at the location is approximately 183 metres.

(c) indicates calculated distance

I HEREBY CERTIFY THAT THE SURVEY REPRESENTED ON THIS PLAN IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE.


PETRO-CANADA EXPLORATION INC.


OIL	AND	GAS	GRID	CO-ORDI	NATES, 1	NAD 27
			GEO	GRAPHIC	UTM, ZONE 2	1, C.M. 57°W
		CORNER	LATITUDE, N	LONGITUDE, W	NORTHING (m)	EAST ING (m)
		NE	54° 50"	55° 00"	6 077 862.9	628 462.7
GI	RID	NW	54° 50"	55° 15"	6 07 7 433.2	612 406.6
AF	REA	SE	54° 40'	55° 00'	6 059 320.7	628 991.5
		SW	54° 40'	55° 15'	6 058 890.1	612 869.3
		NE			6 069 443.6	625 885.7
UNI	TE	NW			6 069 432.9	625 483.5
SECTION	ON 16	SE			6 068 980.1	625 898.6
		SW			6 068 969.3	625 496.4

FINAL WELI	SITE C	O-ORDIN	IATES, N	AD 27
	GEOGRAPHIC		UTM, ZONE 21, C.M. 57°W	
	LATITUDE, N	LONGITUDE, W	NORTHING (m)	EASTING (m)
MINI-RANGER ANTENNA	54° 45' 22.50"	55° 02' 52.39"	6 069 200.2	625 626.1
PLATFORM C1	54° 45' 22.47"	55° 02' 52.39"	6 069 199.3	625 626.2
PELER IN DRILL STEM AS DETERMINED BY RANGE RESECTION	54° 45' 22.47"	55° 02' 49.06"	6 069 201.0	625 685.7

STATION	GEOGRAPHICS	UTM, ZONE 21 C.M. 57°W	SURFACE DISTANCE TO DRILLSTEM (COMPUTED
SPOTTED ISLAND 1983 ARGO STATION C.L.S.R. PLAN 64857	53° 30′ 58.673″N 55° 45′ 02.429″W	5 930 216.223N 582 840.078E	145 477m
CAPE HARRISON 1983 ARGO STATION C.L.S.R. PLAN 64857	54° 55' 28.777"N 57° 56' 20.674"W	6 086 596.012N 439 814.929E	186 749m
CAPE HARRIGAN 1983 ARGO STATION C.L.S.R. PLAN 64857	55° 50' 29.959"N 60° 19' 09.703"W	6 193 226.256N 292 168.385E	355 926m
ST IRRUP ISLAND 1983 ARGO STATION C.L.S.R. PLAN 67305	57° 34' 10.982"N 61° 18' 56.756"W	6 388 805.132N 241 939.830E	499 505m
DRILL STEM FINAL POSITION BY ARGO RANGE RESECTION	54° 45′ 22.47″N 55° 02′ 49.06″W	6 069 201.0 N 625 685.7 E	0
ARG	O DM - 54	INFORMATI	ION

DIAGRAM SHOWING SURVEY OF WELLSITE

Mini Ranger

DRILL STEM ON PELLERIN NOT TO SCALE

		MARY OF LITE POINT SURV	ΈΥ
	PUBL ISHED DATUM SH IFTS	DRILLSTEM POSITION PELER IN OBSERVED GEOCENTR IC CO-ORD INATES (1) (broadcast ephemeris datum)	DRILLSTEM POSITION PELERIN DERIVED 1927 NAD CO-ORDINATES (Geocentric minus Datum shift)
cartesian {	-38 m +158 m +182 m	+2 113 385.49 m -3 023 394.97 m +5 185 799.41 m 54° 45' 22.42"N 55° 02' 45.74" W 24.1m 12.3m 36.4 m	+2 113 423.49 m -3 023 552.97 m +5 185 617.41 m 54 45' 22.29" N 55° 02' 49.06" W 24.1m 36.6m 62.3 m

②GEM 10B is the Goddard Earth Model of the geoid for which the given heights are computed relative to an eccentric 1927 NAD ellipsode. The eccentricity used was the published datum shift at station Goose Bay $x_0 = -38$, $y_0 = +158$, $z_0 = +182$ (in Surveying Offshore Canada Lands for Mineral Resource Development, Third Edition, December, 1982).

1927 N. A. D. UTM ZONE 21 C.M. 57° W DRILL STEM POSITION BY SATELL ITE 3-D POSITIONING (CONFIRMATION) 54° 45' 22.29 N 55° 02' 49.06"W 6 069 195.4 N 625 685.8E

OCTOBER 13, 1983

McELHANNEY OFFSHORE SURVEYS LTD.

CANADA

20

083562